186 research outputs found

    Expression of a human cartilage procollagen gene (COL2A1) in mouse 3T3 cells.

    Get PDF
    Expression in a recombinant system has been difficult to obtain for any of the major fibrillar collagens that require processing by eight or more post-translational enzymes. Here, two DNA constructs were designed so that the promoter region of the gene for the pro-alpha 1(I) chain of human type I procollagen drove expression of the human type II procollagen gene in mouse NIH 3T3 cells, a culture line that normally synthesizes type I procollagen but not any cartilage-specific protein such as type II procollagen. Both constructs were expressed as both mRNA and protein. In clones expressing the construct at high levels, the steady-state levels of mRNA and the production of type II procollagen were comparable to the mRNA levels and production of type I procollagen from the endogenous mouse genes. Comparison of clones containing the two constructs demonstrated that sequences extending 80 base pairs beyond the major polyadenylation signal of the gene are not in themselves sufficient for correct termination and 3\u27 processing of RNA transcripts. The results strongly suggest that specific sequences present in a downstream 3.5-kilobase SphI/SphI fragment determine the termination of the transcription. Of special importance is that the system will make it possible to examine the consequences of mutations in the human type II procollagen gene on the processing of RNA transcripts and on the functional properties of the protein simply by using the genomic DNA from leukocytes or other non-cartilaginous sources

    Stanniocalcin-1 Regulates Extracellular ATP-Induced Calcium Waves in Human Epithelial Cancer Cells by Stimulating ATP Release from Bystander Cells

    Get PDF
    Background: The epithelial cell response to stress involves the transmission of signals between contiguous cells that can be visualized as a calcium wave. In some cell types, this wave is dependent on the release of extracellular trinucleotides from injured cells. In particular, extracellular ATP has been reported to be critical for the epithelial cell response to stress and has recently been shown to be upregulated in tumors in vivo. Methodology/Principal Findings: Here, we identify stanniocalcin-1 (STC1), a secreted pleiotrophic protein, as a critical mediator of calcium wave propagation in monolayers of pulmonary (A549) and prostate (PC3) epithelial cells. Addition of STC1 enhanced and blocking STC1 decreased the distance traveled by an extracellular ATP-dependent calcium wave. The same effects were observed when calcium was stimulated by the addition of exogenous ATP. We uncover a positive feedback loop in which STC1 promotes the release of ATP from cells in vitro and in vivo. Conclusions/Significance: The results indicated that STC1 plays an important role in the early response to mechanical injury by epithelial cells by modulating signaling of extracellular ATP. This is the first report to describe STC1 as a modulator o

    LA LOGICA DE LOS POSIBLES NARRATIVOS EN RELATOS AMAQUEMES SOBRE BRUJAS DE MARIA ISABEL CORONA VELAZQUEZ

    Get PDF
    La tesis se fundamenta en ocho relatos tomados de Relatos amaquemes que son los siguientes: “Se casó con una bruja” (1), “Esposa hechicera” (2), “Le daba de comer pura sangre” (3), “Esta es bruja” (4), “Dos luces” (5), “Se volteaban los pantalones” (6), “La bruja iba a Chalma” (7), “Dos guajolotes se peleaban” (8). (véase anexo) El planteamiento base de mi problema de investigación es el siguiente: ¿Cómo funciona la lógica de los posibles narrativos en los Relatos amaquemes? Así mismo la hipótesis que responde a mi pregunta de investigación es la siguiente: los rasgos que tienen en común los distintos relatos recopilados tienen como función caracterizar a la bruja mexicana. O particularmente caracterizar a la bruja de la región oriente del Estado de México. Mientras que los rasgos de la lógica de los posibles narrativos permiten conocer el desarrollo estructural de los relatos

    Pharmaceutical induction of ApoE secretion by multipotent mesenchymal stromal cells (MSCs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apolipoprotein E (ApoE) is a molecular scavenger in the blood and brain. Aberrant function of the molecule causes formation of protein and lipid deposits or "plaques" that characterize Alzheimer's disease (AD) and atherosclerosis. There are three human isoforms of ApoE designated ε2, ε3, and ε4. Each isoform differentially affects the structure and function of the protein and thus the development of disease. Homozygosity for ApoE ε4 is associated with atherosclerosis and Alzheimer's disease whereas ApoE ε2 and ε3 tend to be protective. Furthermore, the ε2 form may cause forms of hyperlipoproteinemia. Therefore, introduction of ApoE ε3 may be beneficial to patients that are susceptible to or suffering from these diseases. Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) are adult progenitor cells found in numerous tissues. They are easily expanded in culture and engraft into host tissues when administered appropriately. Furthermore, MSCs are immunosuppressive and have been reported to engraft as allogeneic transplants. In our previous study, mouse MSCs (mMSCs) were implanted into the brains of ApoE null mice, resulting in production of small amounts of ApoE in the brain and attenuation of cognitive deficits. Therefore human MSCs (hMSCs) are a promising vector for the administration of ApoE ε3 in humans.</p> <p>Results</p> <p>Unlike mMSCs, hMSCs were found not to express ApoE in culture; therefore a molecular screen was performed for compounds that induce expression. PPARγ agonists, neural stem cell conditioned medium, osteo-inductive media, dexamethasone, and adipo-inductive media (AIM) were tested. Of the conditions tested, only AIM or dexamethasone induced sustained secretion of ApoE in MSCs and the duration of secretion was only limited by the length of time MSCs could be sustained in culture. Upon withdrawal of the inductive stimuli, the ApoE secretion persisted for a further 14 days.</p> <p>Conclusion</p> <p>The data demonstrated that pre-treatment and perhaps co-administration of MSCs homozygous for ApoE ε3 and dexamethasone may represent a novel therapy for severe instances of AD, atherosclerosis and other ApoE-related diseases.</p

    TNFα-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury

    Get PDF
    TNFα-stimulated gene-6 (TSG6), a 30-kDa protein generated by activated macrophages, modulates inflammation; however, its mechanism of action and role in the activation of macrophages are not fully understood. Here we observed markedly augmented LPS-induced inflammatory lung injury and mortality in TSG6−/− mice compared with WT (TSG6+/+) mice. Treatment of mice with intratracheal instillation of TSG6 prevented LPS-induced lung injury and neutrophil sequestration, and increased survival in mice. We found that TSG6 inhibited the association of TLR4withMyD88, thereby suppressing NF-κB activation. TSG6 also prevented the expression of proinflammatory proteins (iNOS, IL-6, TNFα, IL-1β, and CXCL1) while increasing the expression of antiinflammatory proteins (CD206, Chi3l3, IL-4, and IL-10) in macrophages. This shift was associated with suppressed activation of proinflammatory transcription factors STAT1 and STAT3. In addition, we observed that LPS itself up-regulated the expression of TSG6 in TSG6+/+ mice, suggesting an autocrine role for TSG6 in transitioning macrophages. Thus, TSG6 functions by converting macrophages from a proinflammatory to an anti-inflammatory phenotype secondary to suppression of TLR4/NF-κB signaling and STAT1 and STAT3 activation

    In Vitro Macrophage Assay Predicts the In Vivo Anti-inflammatory Potential of Exosomes from Human Mesenchymal Stromal Cells

    Get PDF
    Extracellular vesicles (EVs) play key roles in cell biology and may provide new clinical diagnostics and therapies. However, it has proven difficult to develop protocols for their purification and characterization. One of the major barriers in the field has been a lack of convenient assays for their bioactivity. Developing assays has not been a trivial matter, because of the heterogeneity of EVs, the multiple activities they demonstrate, and the uncertainty about their modes of action. Therefore, it is likely that multiple assays for their activities are needed. One important assay will be for the anti-inflammatory activity observed in mice after administration of the small EVs commonly referred to as exosomes. We developed an assay for the anti-inflammatory activity of exosomes with a line of mouse macrophages. The assay makes it possible to rank different preparations of exosomes by their anti-inflammatory activity, and their ranking predicts their efficacy in suppressing LPS-stimulated inflammation in mice. The assay is convenient for comparing multiple samples and, therefore, should be useful in developing protocols for the purification and characterization of anti-inflammatory exosomes.Fil: Pacienza, Natalia Alejandra. Texas A&M University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; ArgentinaFil: Lee, Ryang Hwa. Texas A&M University; Estados UnidosFil: Bae, Eun-Hye. Texas A&M University; Estados UnidosFil: Kim, Dong-ki. Texas A&M University; Estados UnidosFil: Liu, Qisong. Texas A&M University; Estados UnidosFil: Prockop, Darwin J.. Texas A&M University; Estados UnidosFil: Yannarelli, Gustavo Gabriel. Texas A&M University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentin

    Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6

    Get PDF
    SummaryQuantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 × 106 hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of about 24 hr, but <1000 cells appeared in six other tissues. The hMSCs in lung upregulated expression of multiple genes, with a large increase in the anti-inflammatory protein TSG-6. After myocardial infarction, i.v. hMSCs, but not hMSCs transduced with TSG-6 siRNA, decreased inflammatory responses, reduced infarct size, and improved cardiac function. I.v. administration of recombinant TSG-6 also reduced inflammatory responses and reduced infarct size. The results suggest that improvements in animal models and patients after i.v. infusions of MSCs are at least in part explained by activation of MSCs to secrete TSG-6

    Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome

    Get PDF
    BACKGROUND: Toxic shock syndrome (TSS) is caused by an overwhelming host-mediated response to bacterial superantigens produced mainly by Staphylococcus aureus and Streptococcus pyogenes. TSS is characterized by aberrant activation of T cells and excessive release of pro-inflammatory cytokines ultimately resulting in capillary leak, septic shock, multiple organ dysfunction and high mortality rates. No therapeutic or vaccine has been approved by the U.S. Food and Drug Administration for TSS, and novel therapeutic strategies to improve clinical outcome are needed. Mesenchymal stromal (stem) cells (MSCs) are stromal cells capable of self-renewal and differentiation. Moreover, MSCs have immunomodulatory properties, including profound effects on activities of T cells and macrophages in specific contexts. Based on the critical role of host-derived immune mediators in TSS, we hypothesized that MSCs could modulate the host-derived proinflammatory response triggered by Staphylococcal enterotoxin B (SEB) and improve survival in experimental TSS. METHODS: Effects of MSCs on proinflammatory cytokines in peripheral blood were measured in wild-type C57BL/6 mice injected with 50 μg of SEB. Effects of MSCs on survival were monitored in fatal experimental TSS induced by consecutive doses of D-galactosamine (10 mg) and SEB (10 μg) in HLA-DR4 transgenic mice. RESULTS: Despite significantly decreasing serum levels of IL-2, IL-6 and TNF induced by SEB in wild-type mice, human MSCs failed to improve survival in experimental TSS in HLA-DR4 transgenic mice. Similarly, a previously described downstream mediator of human MSCs, TNF-stimulated gene 6 (TSG-6), did not significantly improve survival in experimental TSS. Furthermore, murine MSCs, whether unstimulated or pre-treated with IFNγ, failed to improve survival in experimental TSS. CONCLUSIONS: Our results suggest that the immunomodulatory effects of MSCs are insufficient to rescue mice from experimental TSS, and that mediators other than IL-2, IL-6 and TNF are likely to play critical mechanistic roles in the pathogenesis of experimental TSS
    corecore